908 resultados para Discrete-time systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This correspondence paper addresses the problem of output feedback stabilization of control systems in networked environments with quality-of-service (QoS) constraints. The problem is investigated in discrete-time state space using Lyapunov’s stability theory and the linear inequality matrix technique. A new discrete-time modeling approach is developed to describe a networked control system (NCS) with parameter uncertainties and nonideal network QoS. It integrates a network-induced delay, packet dropout, and other network behaviors into a unified framework. With this modeling, an improved stability condition, which is dependent on the lower and upper bounds of the equivalent network-induced delay, is established for the NCS with norm-bounded parameter uncertainties. It is further extended for the output feedback stabilization of the NCS with nonideal QoS. Numerical examples are given to demonstrate the main results of the theoretical development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stability results are given for a class of feedback systems arising from the regulation of time-varying discrete-time systems using optimal infinite-horizon and moving-horizon feedback laws. The class is characterized by joint constraints on the state and the control, a general nonlinear cost function and nonlinear equations of motion possessing two special properties. It is shown that weak conditions on the cost function and the constraints are sufficient to guarantee uniform asymptotic stability of both the optimal infinite-horizon and movinghorizon feedback systems. The infinite-horizon cost associated with the moving-horizon feedback law approaches the optimal infinite-horizon cost as the moving horizon is extended.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the convergence of a remote iterative learning control system subject to data dropouts. The system is composed by a set of discrete-time multiple input-multiple output linear models, each one with its corresponding actuator device and its sensor. Each actuator applies the input signals vector to its corresponding model at the sampling instants and the sensor measures the output signals vector. The iterative learning law is processed in a controller located far away of the models so the control signals vector has to be transmitted from the controller to the actuators through transmission channels. Such a law uses the measurements of each model to generate the input vector to be applied to its subsequent model so the measurements of the models have to be transmitted from the sensors to the controller. All transmissions are subject to failures which are described as a binary sequence taking value 1 or 0. A compensation dropout technique is used to replace the lost data in the transmission processes. The convergence to zero of the errors between the output signals vector and a reference one is achieved as the number of models tends to infinity.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An asymptotic recovery design procedure is proposed for square, discrete-time, linear, time-invariant multivariable systems, which allows a state-feedback design to be approximately recovered by a dynamic output feedback scheme. Both the case of negligible processing time (compared to the sampling interval) and of significant processing time are discussed. In the former case, it is possible to obtain perfect. © 1985 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La tesis pretende explorar acercamientos computacionalmente confiables y eficientes de contractivo MPC para sistemas de tiempo discreto. Dos tipos de contractivo MPC han sido estudiados: MPC con coacción contractiva obligatoria y MPC con una secuencia contractiva de conjuntos controlables. Las técnicas basadas en optimización convexa y análisis de intervalos son aplicadas para tratar MPC contractivo lineal y no lineal, respectivamente. El análisis de intervalos clásicos es ampliado a zonotopes en la geometría para diseñar un conjunto invariante de control terminal para el modo dual de MPC. También es ampliado a intervalos modales para tener en cuenta la modalidad al calcula de conjuntos controlables robustos con una interpretación semántica clara. Los instrumentos de optimización convexa y análisis de intervalos han sido combinados para mejorar la eficacia de contractive MPC para varias clases de sistemas de tiempo discreto inciertos no lineales limitados. Finalmente, los dos tipos dirigidos de contractivo MPC han sido aplicados para controlar un Torneo de Fútbol de Copa Mundial de Micro Robot (MiroSot) y un Tanque-Reactor de Mezcla Continua (CSTR), respectivamente.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A neural network enhanced self-tuning controller is presented, which combines the attributes of neural network mapping with a generalised minimum variance self-tuning control (STC) strategy. In this way the controller can deal with nonlinear plants, which exhibit features such as uncertainties, nonminimum phase behaviour, coupling effects and may have unmodelled dynamics, and whose nonlinearities are assumed to be globally bounded. The unknown nonlinear plants to be controlled are approximated by an equivalent model composed of a simple linear submodel plus a nonlinear submodel. A generalised recursive least squares algorithm is used to identify the linear submodel and a layered neural network is used to detect the unknown nonlinear submodel in which the weights are updated based on the error between the plant output and the output from the linear submodel. The procedure for controller design is based on the equivalent model therefore the nonlinear submodel is naturally accommodated within the control law. Two simulation studies are provided to demonstrate the effectiveness of the control algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Routh-stability method is employed to reduce the order of discrete-time system transfer functions. It is shown that the Routh approximant is well suited to reduce both the denominator and the numerator polynomials, although alternative methods, such as PadÃ�Â(c)-Markov approximation, are also used to fit the model numerator coefficients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article considers the stabilization by output feedback controllers for discrete-time systems. The controller can place all of the closed-loop poles within a specified disk D(-α, 1/β), centred at (-α,0) with radius 1/β, where | - α|  + 1/β < 1. The design method involves the decomposition of the system into two portions. The first portion comprises of all of the poles that are lying outside of the specified disk. A reduced-order model is constructed for this portion. The second portion comprises of all of the remaining poles of the system and is characterized by an H-norm bound. The controller design is then accomplished by using H-control theory. It is shown that, subject to the solvability of an algebraic Riccati equation, output feedback controllers can be systematically derived. The order of the controller is low, and can be as low as the number of the open-loop poles that are lying outside of the specified disk. A step-by-step design algorithm is provided. Numerical examples are given to illustrate the attractiveness of the design method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By using the result of robust strictly positive real synthesis of polynomial segments for continuous time systems, it is proved that, for any two n-th order polynomials a(z) and b(z), the Schur stability of their convex combination is necessary and sufficient for the existence of an n-th order polynomial c(z) such that c(z)/a(z) and c(z)/b(z) are both strictly positive real. We also provide the construction method of c(z). Illustrative examples are provided to show the effectiveness of this method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of Kalman filtering is very common in state estimation problems. The problem with Kalman filters is that they require full prior knowledge about the system modeling. It is also assumed that all the observations are fully received. In real applications, the previous assumptions are not true all the time. It is hard to obtain the exact system model and the observations may be lost due to communication problems. In this paper, we consider the design of a robust Kalman filter for systems subject to uncertainties in the state and white noise covariances. The systems under consideration suffer from random interruptions in the measurements process. An upper bound for the estimation error covariance is proposed. The proposed upper bound is further minimized by selection of optimal filter parameters. Simulation example shows the effectiveness of the proposed filter.